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Experimentally measured molar attenuation coefficient ε is directly
related to the cross-section σ:[2]

Introduction Machine Learning: KREG Model

We use the KREG model (Kernel ridge regression [KRR] with RE descriptor
and the Gaussian kernel function; RE descriptor stands for Internuclear
distances Relative to Equilibrium)[5] to complete all the ML tasks. For
excitation energies and oscillator strengths of each state, we train individual
ML models, and then make prediction for 50000 nuclear configurations to
calculate cross-section.
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ML-NEA

Nuclear ensemble is sampled
in our study[1] from a Wigner
distribution (normal mode
sampling).

Thus, we can simulate
absorption spectra by
calculating cross-section.

Commonly used approach is
single point convolution (SPC),
which only performs quantum
chemical calculations at the
ground state geometry, and then
broadens oscillator strengths
with the Gaussian function.

Much more accurate method is Nuclear Ensemble Approach (NEA). It
calculates cross section by averaging over multiple normalized broadening
functions at different conformations[3,4]. Compared with the single point
convolution (SPC), NEA successfully makes a prediction for the absorption
intensity when transitions are forbidden (have zero oscillator strength) at the
ground state conformation

Because many confor-
mations are quite similar, we
can use ML to interpolate
between them. Hence we can
separate the whole ensemble
into 2 parts, QC (blue sticks)
and ML (orange sticks). We
only use very small number of
QC calculations (several
hundreds) to achieve the high
precision.[1]
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Absorption spectra can be calculated with 
Mlatom[5,6] and Newton-X[7] much faster and more accurately

Read the blog post!
B.-X. Xue, M. Barbatti, P. O. Dral, 
J. Phys. Chem. A 2020, 124, 35, 
7199–7210

Start using MLatom!
http://mlatom.com

38 atoms and 30 excited states
Only 100 training points is sufficient! [1]

In ML-NEA got rid of arbitrary 
parameters by fixing them to 
optimal values![1]
Np = 50000 (number of points in 
ensemble)
𝛿 = 0.01 eV (broadening 

parameter)

Optimal number of training points
can be automatically determined
from convergence of ML validation
error! [1]

(50000 TDDFT        points)
(250 TDDFT points)

(1 TDDFT point)
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RE descriptorthe Gaussian kernel function
𝜎 is the kernel width)

The regression coefficients 𝛼 are found by solving the linear

system of equations for the training set in matrix form:

Train

ValidateSub-training set tuning hyper-
parameters 

Test

Model validation and 
hyperparameter tuning
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