A highlight by Jan Jensen about the Δ-ML approach proposed by us [1] was the most viewed highlight in Computational Chemistry Highlights in 2015. This marks a pleasant ending of the last-year research on improving accuracy of computationally less demanding …

Highlight about Δ-ML Approach Most Viewed in 2015 Read more »

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

Correcting Differences with Machine Learning Read more »

We propose using machine learning (ML) for improving semiempirical Hamiltonian. Given sufficiently large training set ML can be used to correct parameters of semiempirical quantum chemical (SQC) method individually for any target molecule. Such automatic parametrization technique (APT) stands in …

Machine Learning of Semiempirical Parameters Read more »

In our study we reported synthesis, and experimental and theoretical characterization of new one-dimensional coordination polymers. Research article “Multiply Bonded Metal(II) Acetate (Rhodium, Ruthenium, and Molybdenum) Complexes with the trans-1,2-Bis(N-methylimidazol-2-yl)ethylene Ligand” (DOI: 10.1021/ic501435a) was published on November 13th in the …

New 1D Coordination Polymers Read more »

Did you know that the reactivity of alkyl radicals towards H-abstraction is related to their electron accepting properties? And that alkyl cations are much more reactive than alkyl radicals for the same reason? The same tool that clearly visualizes these …

The Unrestricted Local Properties Read more »