We are happy to introduce MLatom 2: a major release of our integrative platform for user-friendly atomistic machine learning. It includes many more features and is further optimized for efficiency. Detailed overview of MLatom 2 is given in our contribution …

MLatom 2: Introducing a Platform for Atomistic Machine Learning Read more »

Paper Bao-Xin Xue, Mario Barbatti*, Pavlo O. Dral*, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310.Preprint on ChemRxiv, DOI: 10.26434/chemrxiv.12594191. Short overview of the method in a form of LiveSlides: In brief ML-NEA can boost the calculation speed and increase …

Machine Learning for Absorption Cross Sections Read more »

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

Correcting Differences with Machine Learning Read more »

We propose using machine learning (ML) for improving semiempirical Hamiltonian. Given sufficiently large training set ML can be used to correct parameters of semiempirical quantum chemical (SQC) method individually for any target molecule. Such automatic parametrization technique (APT) stands in …

Machine Learning of Semiempirical Parameters Read more »