Paper Bao-Xin Xue, Mario Barbatti*, Pavlo O. Dral*, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310.Preprint on ChemRxiv, DOI: 10.26434/chemrxiv.12594191. Short overview of the method in a form of LiveSlides: In brief ML-NEA can boost the calculation speed and increase …

Machine Learning for Absorption Cross Sections Read more »

Tagged with: , , , , , ,

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

Correcting Differences with Machine Learning Read more »

Tagged with: , , , , , ,

We propose using machine learning (ML) for improving semiempirical Hamiltonian. Given sufficiently large training set ML can be used to correct parameters of semiempirical quantum chemical (SQC) method individually for any target molecule. Such automatic parametrization technique (APT) stands in …

Machine Learning of Semiempirical Parameters Read more »

Tagged with: , , , ,

Did you know that the reactivity of alkyl radicals towards H-abstraction is related to their electron accepting properties? And that alkyl cations are much more reactive than alkyl radicals for the same reason? The same tool that clearly visualizes these …

The Unrestricted Local Properties Read more »

Tagged with: , , , ,