Surging efforts and fast progress in AI methods for photochemistry and photophysics make it difficult to track the current state of the art. We cover the recent developments in this field in the chapter on Machine learning methods in photochemistry …

Chapter “Machine Learning Methods in Photochemistry and Photophysics” Read more »

Activation of methane and its conversion to added-value products is an important topic which requires chemical solutions with high yields and selectivity. In our recent collaborative study, we present the oxidation of methane to methanol using nitrogen dioxide as a …

Methane Conversion via Photo-Driven Nitration Read more »

Alkyne-embedding [11]cycloparaphenylene ([11]CPPs) was functionalized with electron-donating, -neutral, and -withdrawing aryl substituents to yield a series of nanolassos via click chemistry. We used our state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) to thoroughly analyze the electronic and photophysical properties of these …

Large Cycloparaphenylene Nanolassos Characterized with AIQM1 Read more »

Mario Barbatti, his group and collaborators published an update on Newton-X – a popular open-source platform for surface hopping and nuclear ensembles. An update include extension of the Newton-X platform to supervised (with our MLatom platform) and unsupervised learning (with ulamdyn). The paper is also open access and appeared in the Journal of Chemical Theory and Computation.

In the work published in New Journal of Physics, we combine machine learning (ML) with the numerically exact hierarchical equations of motion (HEOM) approach, propagating quantum dynamics of a two-state system (spin-boson model) with only ca. 10% of the HEOM …

Speeding up quantum dissipative dynamics of open systems with kernel methods Read more »

We have developed artificial intelligence-enhanced quantum mechanical method 1 (AIQM1), which can be used out of the box for very fast quantum chemical calculations with the accuracy of the gold-standard coupled-cluster method. Read more »

Paper Bao-Xin Xue, Mario Barbatti*, Pavlo O. Dral*, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310.Preprint on ChemRxiv, DOI: 10.26434/chemrxiv.12594191. Short overview of the method in a form of LiveSlides: In brief ML-NEA can boost the calculation speed and increase …

Machine Learning for Absorption Cross Sections Read more »