Structure-based sampling and self-correcting machine learning is used for precise representation of molecular potential energy surfaces and calculating vibrational levels with spectroscopic accuracy (errors less than 1 cm−1 relative to the reference ab initio spectrum) decreasing the number of required …

Self-Correcting Machine Learning and Structure-Based Sampling Read more »

A series of the substituted two-electron acceptors with a dicyanomethylene-bridged acridophosphine scaffold has been prepared and compared with the nitrogen-containing counterpart using various spectroscopic, electrochemical and theoretical methods.

OMx methods have once again been shown to give as accurate results as DFT methods, but substantially faster.  The OM2 method has outperformed other semi-empirical methods and has essentially the same accuracy as BLYP for the distribution coefficient part of …

OMx Methods Score Well in Set from SAMPL5 Challenge Read more »

A highlight by Jan Jensen about the Δ-ML approach proposed by us [1] was the most viewed highlight in Computational Chemistry Highlights in 2015. This marks a pleasant ending of the last-year research on improving accuracy of computationally less demanding …

Highlight about Δ-ML Approach Most Viewed in 2015 Read more »