OMx methods have once again been shown to give as accurate results as DFT methods, but substantially faster.  The OM2 method has outperformed other semi-empirical methods and has essentially the same accuracy as BLYP for the distribution coefficient part of …

OMx Methods Score Well in Set from SAMPL5 Challenge Read more »

A highlight by Jan Jensen about the Δ-ML approach proposed by us [1] was the most viewed highlight in Computational Chemistry Highlights in 2015. This marks a pleasant ending of the last-year research on improving accuracy of computationally less demanding …

Highlight about Δ-ML Approach Most Viewed in 2015 Read more »

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

Correcting Differences with Machine Learning Read more »

We propose using machine learning (ML) for improving semiempirical Hamiltonian. Given sufficiently large training set ML can be used to correct parameters of semiempirical quantum chemical (SQC) method individually for any target molecule. Such automatic parametrization technique (APT) stands in …

Machine Learning of Semiempirical Parameters Read more »