Our editorial on the Special Topic “Modern semiempirical methods” was published in JCP. We overview contributions and overview the trends in the development and applications of semiempirical quantum mechanical methods. The contributions include improvements in the formalism of the method …

Editorial on the Special Topic “Modern semiempirical methods” published in JCP Read more »

Molecular dynamics simulations are widely used to study molecules and materials and lots of effort is put into making these simulations obey the physical laws. Energy conservation law is obviously one of the most important laws that MD should respect. …

Energy-conserving molecular dynamics is not energy conserving! Read more »

We have introduced a concept of 4D-spacetime atomistic AI models that learn how the molecule changes in time. We demonstrate that this concept is feasible by developing the 4D-spacetime GICnet models that directly predict the atomic coordinates of a molecule …

Beyond 3D-Machine Learning Interatomic Potentials: Meet 4D-Spacetime Atomistic Artificial Intelligence Models Read more »

Surging efforts and fast progress in AI methods for photochemistry and photophysics make it difficult to track the current state of the art. We cover the recent developments in this field in the chapter on Machine learning methods in photochemistry …

Chapter “Machine Learning Methods in Photochemistry and Photophysics” Read more »

In a recent article published in Frontiers in Physics, we introduce QD3SET-1, a database consisting of 8 data sets that provide the time-evolved population and coherence dynamics for two widely studied systems: the so-called spin-boson model and FMO complex. The …

QD3SET-1: A Database with Quantum Dissipative Dynamics Data Sets Read more »

We have got many interesting submissions to the Special Issue ‘Artificial Intelligence in Computational Chemistry’ and some papers are already online. Many authors requested more time for submission, so we are pleased to extend it to two more months. There …

Submissions to Special Issue ‘Artificial Intelligence in Computational Chemistry’ is extended to September 30! Read more »

We improved (p)KREG models for an accurate representation of molecular potential energy surfaces (PESs) by including gradient information explicitly in their formalism. Our models are better or on par with other state-of-the-art machine learning models as we show on extensive …

(p)KREG Models for Accurate Molecular Potential Energy Surfaces Read more »

Alkyne-embedding [11]cycloparaphenylene ([11]CPPs) was functionalized with electron-donating, -neutral, and -withdrawing aryl substituents to yield a series of nanolassos via click chemistry. We used our state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) to thoroughly analyze the electronic and photophysical properties of these …

Large Cycloparaphenylene Nanolassos Characterized with AIQM1 Read more »