## Paper on MLatom

The mathematical and implementation details of the techniques available in MLatom: A Package for Atomistic Simulations with Machine Learning are reported.

The mathematical and implementation details of the techniques available in MLatom: A Package for Atomistic Simulations with Machine Learning are reported.

MLatom 1.0 release of my package for atomistic simulations with machine learning is now available.

We demonstrate that deep learning can be used to perform pure machine learning nonadiabatic excited-state dynamics of molecular systems.

Machine learning paves the way for massive simulations of nonadiabatic excited-state molecular dynamics.

Structure-based sampling and self-correcting machine learning is used for precise representation of molecular potential energy surfaces and calculating vibrational levels with spectroscopic accuracy (errors less than 1 cm−1 relative to the reference ab initio spectrum) decreasing the number of required …

Self-Correcting Machine Learning and Structure-Based Sampling Read more »

A highlight by Jan Jensen about the Δ-ML approach proposed by us [1] was the most viewed highlight in Computational Chemistry Highlights in 2015. This marks a pleasant ending of the last-year research on improving accuracy of computationally less demanding …

Highlight about Δ-ML Approach Most Viewed in 2015 Read more »

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

We propose using machine learning (ML) for improving semiempirical Hamiltonian. Given sufficiently large training set ML can be used to correct parameters of semiempirical quantum chemical (SQC) method individually for any target molecule. Such automatic parametrization technique (APT) stands in …