We have developed artificial intelligence-enhanced quantum mechanical method 1 (AIQM1), which can be used out of the box for very fast quantum chemical calculations with the accuracy of the gold-standard coupled-cluster method. Read more »

We are happy to introduce MLatom 2: a major release of our integrative platform for user-friendly atomistic machine learning. It includes many more features and is further optimized for efficiency. Detailed overview of MLatom 2 is given in our contribution …

MLatom 2: Introducing a Platform for Atomistic Machine Learning Read more »

Paper Bao-Xin Xue, Mario Barbatti*, Pavlo O. Dral*, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310.Preprint on ChemRxiv, DOI: 10.26434/chemrxiv.12594191. Short overview of the method in a form of LiveSlides: In brief ML-NEA can boost the calculation speed and increase …

Machine Learning for Absorption Cross Sections Read more »

Diazapentacene derivatives were synthesized and investigated for their potential application in organic field-effect transistors, with one derivative showing a rare n-type behavior. The blog post written by Wudi Yang and Shuang Zhang and edited by Pavlo Dral. Organic field-effect transistors …

Investigation of Application Potential of Diazapentacene Derivatives in Organic Field-Effect Transistors Read more »