Activation of methane and its conversion to added-value products is an important topic which requires chemical solutions with high yields and selectivity. In our recent collaborative study, we present the oxidation of methane to methanol using nitrogen dioxide as a …

Methane Conversion via Photo-Driven Nitration Read more »

We improved (p)KREG models for an accurate representation of molecular potential energy surfaces (PESs) by including gradient information explicitly in their formalism. Our models are better or on par with other state-of-the-art machine learning models as we show on extensive …

(p)KREG Models for Accurate Molecular Potential Energy Surfaces Read more »

Alkyne-embedding [11]cycloparaphenylene ([11]CPPs) was functionalized with electron-donating, -neutral, and -withdrawing aryl substituents to yield a series of nanolassos via click chemistry. We used our state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) to thoroughly analyze the electronic and photophysical properties of these …

Large Cycloparaphenylene Nanolassos Characterized with AIQM1 Read more »

Materials can simultaneously absorb not just one but two photons and molecules with strong two-photon absorption (TPA) are important in many fields such as unconverted laser, photodynamic therapy, and 3D printing. In our work published in Advanced Science (open access), …

Explaining and Predicting Two-Photon Absorption with Machine Learning Read more »

The book “Quantum Chemistry in the Age of Machine Learning” guides aspiring beginners and specialists in this exciting field by covering topics ranging from basic concepts to comprehensive methodological details in machine learning, quantum chemistry, and their combinations in a …

Book “Quantum Chemistry in the Age of Machine Learning” Read more »

In the work published in the Journal of Physical Chemistry Letters, we have proposed a one-shot trajectory learning (OSTL) approach that allows an ultrafast prediction of 10-ps-long quantum dynamics of an open quantum system just in 70 milliseconds. OSTL approach takes …

One-Shot Trajectory Learning of Open Quantum Systems Dynamics Read more »

In our work published in the Journal of Physical Chemistry Letters, we investigate the performance of the general-purpose data-driven methods ANI-1ccx and AIQM1 in the calculation of enthalpies of formation. Extensive benchmark tests show that these two methods can achieve …

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods Read more »

In the work published in Nature Communications, we have developed a blazingly fast artificial intelligence (AI)-based quantum dynamics (QD) approach with applications to excitation energy transfer in the well-known Fenna–Matthews–Olson (FMO) complex found in green sulfur bacteria.

In the work published in New Journal of Physics, we combine machine learning (ML) with the numerically exact hierarchical equations of motion (HEOM) approach, propagating quantum dynamics of a two-state system (spin-boson model) with only ca. 10% of the HEOM …

Speeding up quantum dissipative dynamics of open systems with kernel methods Read more »

We report global potential energy surfaces (PESs) database VIB5 of 5 molecules of astrophysical interest which was used to produce rovibrational spectra approaching spectroscopic accuracy and contains state-of-the-art, high-level energies and energy gradients. This database can be used to develop …

VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces Read more »