Structure-based sampling and self-correcting machine learning is used for precise representation of molecular potential energy surfaces and calculating vibrational levels with spectroscopic accuracy (errors less than 1 cm−1 relative to the reference ab initio spectrum) decreasing the number of required …

Self-Correcting Machine Learning and Structure-Based Sampling Read more »

A series of the substituted two-electron acceptors with a dicyanomethylene-bridged acridophosphine scaffold has been prepared and compared with the nitrogen-containing counterpart using various spectroscopic, electrochemical and theoretical methods.

In our recent study, we propose using machine learning (ML) to correct differences in properties calculated at two quantum chemical (QC) methods with different accuracy. In the Δ-ML approach ML model is trained on differences between some property calculated at …

Correcting Differences with Machine Learning Read more »